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ABSTRACT

A new TLM method is presented which operates
directly in the frequency domain while following the
basic time domain solution procedure. The new
method combines the flexibility of the conventional
TLM method with the computational efficiency of
frequency domain techniques. S-parameters for 3D
waveguide discontinuities are calculated and good
agreement is found with other methods.

1. INTRODUCTION

Time domain methods are known as
computationally intensive general purpose field
simulators suitable to analyze transmission line
structures and discontinuities of arbitrary

geometry[11[2], While these methods are very
helpful in understanding the behavior of fields and
waves at circuit discontinuities without writing
special purpose programs, time domain methods
are not very effective tools in the design of
frequency selective microwave circuits. This is so
because time domain methods, by virtue of the
impulse excitation carry the entire frequency
spectrum through the algorithm and only after a
lengthy processing time and the Fourier transform
of the resulting impulse response, the frequency
spectrum of interest can be selected.

In this paper we introduce a new method that
uses, in principle, the time domain procedure of the
TLM method, but for only one frequency per
computation run, and thus avoids the processing of
unnecessary frequency information. The
computational efficiency of this new frequency
domain TLM(FDTLM) method is comparable if not
superior over that of other frequency domain
methods, but, in addition, retains the flexibility
known from the time domain TLM(TDTLM)
method to characterize arbitrary shaped circuit
structures.

CH3141-9/92/0000-0775$01.00 © 1992 IEEE

This new approach is best understood by
recalling that the time domain TLM method
establishes an equivalence between the
electromagnetic field in space and the impulse
distribution at the junctions (node) of the
transmission line network. This method simulates
the realistic evolution of the impulse distribution
with time. The general TLM algorithm is
comprised of events relating the incident and
reflected impulses at each time step at each node:

V=S, 1)

The reflected impulses become incident impulses at
the adjacent transmission line at the next time step:

Vein =C-V/ )

where S and C are the scattering and connection
matrices.

By substituting (1) into (2), the scattering event (1)
and the transmission event (2) can be combined
into:

Ven=4"V, k=0,1,2,3,..... 3)
A=C-S
Obviously, equation (3) is a simple iteration

procedure for solving a system of linear equations

with a coefficient matrix A and initial values V; [3].
Therefore, the TLM algorithm is essentially a
physical simulation of the simple mathematical
iteration procedure of (3). Since this procedure is
computationally very slow, also the TDTLM is of
poor computational efficiency, which can only be
improved by using parallel processors or special
programming techniques.

On the other hand, looking at the TLM
algorithm in the context of solving a system of
linear equations, one is attempted to utilize
advanced techniques developed in linear algebra,
instead of simple iteration method, to improve the
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computational efficiency of the TLM. This is the
focus of this paper. Several concepts developed
here lead to a new TLM algorithm which
establishes a direct relationship between the
solution procedure in the time and the frequency
domain, and at the same time combines the
flexibility of the time domain TLM with the
computational efficiency of frequency domain
methods.

2. EXCITATION

The differences between time and frequency
domain methods is the excitation: Time domain
methods work with impulses while frequency
domain methods use sinusoidal waves. In the new
TLM method, we use a novel excitation which is
not impulse nor sinusoidal wave but a combination
of both: An impulse sequence with its magnitude
modulated by a sinusoidal wave. This waveform
can also be regarded a continuous sinusoidal wave
sampled at discrete times (Fig.1). At any time step
this new excitation retains the form of an impulse
but the modulated amplitude envelope of the series
of impulses centains the information of the structure
analyzed. This approach allows one to transform
the TLM solution procedure directly into the
frequency domain. In comparison to the
conventional TLM method, this new technique
obtains the information only at one frequency during
one run of computation. However, as the solution
procedure is essentially carried out in the frequency
domain, numerous advanced frequency domain
techniques can be readily implemented to greatly
enhance the efficiency of the method. The
computer resources required in this new method
are comparable to other less flexible frequency
domain methods while the ability to analyze
arbitrarily shaped guide wave structures, known
from the conventional TLM method, is still
preserved.

3. INTRINSIC SCATTERING MATRIX

Considering a space discretized by the TLM
network with N exterior branches connecting the
space to the surrounding space (Fig.2). At these
exterior branches, incident impulses, with their
magnitude modulated by a sinusoidal wave as
described before, are injected and the reflected
impulses are observed. These reflected impulses,
after a sufficiently long period of time, would
become a modulated impulse sequence with the
same modulation frequency as the incident ones.
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The magnitude of the reflected impulses will be
related linearly to that of the incident impulses since
there are no non-linear events taking place in the
TLM network. Therefore, the magnitudes of the

incident , and reflected .  impulses at the
exterior branches are related by the following
relationship:

V=MV 4)

M is defined as the intrinsic scattering matrix of the
structure which is solely determined by the
properties of the structure itself and the modulation
frequency and can be derived from its scattering
matrix S and connection matrix C. Normalizing the
voltages by the branch impedances :

u=Y2.y 5)

1, . o .
where y?2 is a diagonal matrix with the ith element

being Y,%; Y, is the admittance of the ith branch.
Substituting (5) into (4), we obtain:

1

1
Ww=Y2MY*d=mu 6)

It is easy to show that, according to the reciprocity
theorem [4], the normalized intrinsic scattering
matrix m is symmetrical.

4. ALGORITHM

The intrinsic scattering matrix described above
fully characterizes the structure analyzed and plays
the center role in the new FDTLM method. After
the intrinsic scattering matrix has been found, all
the properties of the structure, such as the
propagation constant I' of the guided wave
structure attached to the discontinuity and the
scattering parameters of the 3-D discontinuity itself,
can be readily computed. The diaoptics technique
can be easily implemented in the new algorithm,
simply by dividing the whole structure into several
sub-structure. Finding the intrinsic scattering
matrices for each of substructures and combining
them by simple matrix operations, leads to the
intrinsic scattering matrix of the whole structure. A
detailed description of the algorithm is quite lengthy
and will not be given here. In the following, we
only give a brief description for the 2-D guiding
structure.

For the guiding structure the intrinsic scattering



matrix m is constructed for a slice of waveguide
which contains one node in the propagation
direction (Fig.3). In this case, we rewrite equation
(6) as follows:

o)l )

b, my My |43 N
where bi, b2 stand for the reflected voltage vectors
which contain the reflected voltages of the left and
right branches, respectively. a], a2 denote the

incident voltage vectors. By performing the
following variable transformation in equation (7)

w=l(a+h),  i=(a-b)

v, =(@+hy),  L=(a,-b) (8)
we obtain:

e ol

-, | |c D] (10)

Here i1, i2 represent the total currents, vi, v2 the
total voltages. The submatrices A, B, C, D can be
expressed with the matrices mi1, m12, m21, m22.

For the mode supported in the structure, the
voltage v7 and current -i2 differ from v1 and i1 by
only a constant factor exp(-I'Az). With Az being the
mesh size parameter in the propagation direction.
Now equation (10) can be rewritten as:

]

which can be further simplified into:

11

cosh(I'Az)-v, = A-v (12)
Equation (12) is the standard form of an eigenvalue
problem which can be solved by, for instance, the
QR factorization method. Let the ith eigenvalue of
(11) be I'j and its corresponding eigenvector be vi,
then the corresponding total current can be
obtained by

i =—sinh(I;4z)-C-v, (13)
Finally, the incident and reflected impulses of the ith
mode, aj and bj, can be obtained from equation (8)
and from there the s-parameters are determined.
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5. NUMERICAL RESULTS

Various calculations and comparisons for both
2-D and 3-D problems have been made to validate
this new approach. Fig.4 shows the results of S11
for a dielectric obstacle of finite length in a
rectangular waveguide [5]. Fig.5 shows the results
of S11 and S12 of the microstrip step discontinuity
[6]. The results are in good agreement. The CPU
time is about 5 minutes in the first case and 30
minutes in the second case, both on a SUN
SPARC STATION 2. This is considerably faster
than what the conventional TDTLM method can
achieve analyzing the same structure on the same
serial machine.

6. CONCLUSION

We have introduced a new TLM method which
operates directly in the frequency domain while
following the basic time domain solution procedure.
The new method combines the flexibility of the
conventional TLM method with the computational
efficiency of frequency domain techniques. Several
new concepts leading to this new method have
been introduced. Numerical results of s-parameters
for 3D waveguide discontinuity have been
presented.
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Fig.1 Impulse sequence with its magnitude modulated by a
sinusoidal wave
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Fig.2. A space discretized by the TLM network with N exterior
branches connecting the space to the surrounding space
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Fig.3. A slice of waveguide with a length of Az in z direction
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Fig.4 The reflection coefficient for a dielectric obstacle of finite
length in a rectangular wavegunide (a=2b, c=0.888b,
h=0.399b, 1=0.8b, &=6)
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Fig.5 Frequency-dependent S parameters of the microstrip
step-in-width (w1=0.6mm, wo=2w1, h=0.6mm, £=10)



